
Overview of the Human Genetic Evidence (HuGE) framework 
 
The purpose of the Human Genetic Evidence (HuGE) framework is to evaluate the extent to 
which human genetic data support the hypothesized involvement of a gene in human disease. 
The goal of this document is to provide (a) an overview as to how the HuGE framework was 
designed (i.e. its methodology) and (b) a step-by-step process to use the framework – together 
with publicly available resources – to evaluate genetic support for a gene. 
 
The HuGE framework estimates genetic support using a Bayesian approach. Bayesian 
statistics provides a series of rules to model probabilities as degrees of “belief” in an event – in 
our case, the event is that genetic perturbations of a gene are associated with disease. We 
define “genetic support” as the estimated increase in probability of this event based on the 
observed genetic data. Bayesian statistics are more naturally applied to the “odds” of events, 
rather than probabilities, and there is a one-to-one correspondence between odds and 
probabilities: if an event has probability p, then its odds are p / (1-p).  
 
The HuGE framework defines a set of rules to incorporate data from different classes of 
genetic variation into a Bayesian approach. Before examining genetic data, our belief is 
reflected in a “prior” probability (or, equivalently, a prior odds). We then express both rare and 
common variant genetic data as ‘Bayes Factors (BFs)’, which update the prior probability into a 
“posterior” probability through a simple multiplicative factor of the odds: 
 

𝑃𝑂 = 𝐵𝐹 ∗ '
𝑝𝑟𝑖𝑜𝑟

1 − 𝑝𝑟𝑖𝑜𝑟. 

 
where 𝑃𝑂 indicates the posterior odds, 𝐵𝐹 indicates the Bayes Factor, and 𝑝𝑟𝑖𝑜𝑟 indicates the 
prior probability. We can then convert the posterior odds into the posterior probability through: 
 

𝑃𝑃𝐴 =
𝑃𝑂

1 + 𝑃𝑂 
 
The BF value is the final estimated genetic support for the gene. BFs of 1 result in a posterior 
equal to the prior, and BFs greater than 1 result in a posterior greater than the prior. 
 

 
 



Thus, calculating the degree to which genetic data provide genetic support is reduced to 
calculating a Bayes Factor from the observed genetic data. The final PPA value then follows 
from the above equations, together with a prior probability. Detailed derivations of the Bayes 
Factors used in the HuGE framework can be found below. At the end, genetic support is 
communicated via three independent mechanisms, corresponding to the three values shown in 
each cell of Figure 1: 

 
1. The text labels refer to qualitative values of evidence, derived directly from the 

calculated Bayes Factors. These labels have been previously applied to Bayes Factors 
in other settings (Jeffreys, 1961). 

2. The left numbers correspond to a conservative quantitative estimate of genetic support. 
These follow from applying the Bayes Factors with a prior of 5%, which corresponds to 
an order-of-magnitude level assumption that, for a common disease, there are likely to 
be ~1,000 genes (i.e. 5% of genes in genome) that impact susceptibility. This estimate 
has been used in previous Bayesian genetic studies (Satterstrom et al., 2020). 

3. The right numbers correspond to an optimistic estimate of genetic support. These follow 
from applying the Bayes Factors with a prior of 20%. It has previously been estimated 
that genes with supporting evidence from a mouse model have about a 20% chance of 
exhibiting a disease association (Flannick et al., 2019). This optimistic model may be 
most appropriate for researchers to use when evaluating genes with experimental 
support. 

 
Applying the HuGE calculator to a gene involves three steps: (1) evaluating evidence from 
common variation; (2) evaluating evidence from rare variation; (3) using the two classes of 
evidence to obtain a HuGE score. Below we describe how to conduct these steps using public 
resources, deriving within each step how Bayes Factors are calculated. All of the below steps 
apply to a single trait for which genetic support is being evaluated. 
 
Step 1: Assess evidence from common variation 

1.1 Query GWAS associations nearby the gene. Any resource that supports gene-level 
queries can be used for this step. Potential resources include: 

 
The common metabolic disease knowledge portal (CMDKP): https://hugeamp.org/  
The CMDKP contains GWAS associations from >350 metabolic traits across >300 
datasets and can be freely queried. To assess a gene of interest, visit the website and 



enter the gene into the search bar. The subsequent page will show a list of traits for 
which GWAS associations are observed nearby the gene.  
 

 
   
   
The GWAS catalog: https://www.ebi.ac.uk/gwas/ 
The GWAS catalog is a large, trait-agnostic repository for association statistics from 
GWAS studies and, currently, consists of data from >5500 publications. To scan for trait 
associations, enter a gene of interest in the search bar and the website will return all 
variants nearby the gene that have an association in the database. 
 

 
 
 
Open Targets Genetics: https://genetics.opentargets.org/ 
The Open Targets Genetics database consists of aggregated results based on reported 
GWAS summary statistics in the GWAS catalog (see above). To focus on a gene of 
interest, use the search bar to enter and search for a specific gene: 
 

 
 
 
The GWAS Atlas: https://atlas.ctglab.nl/ 



The GWAS Atlas is a GWAS repository consisting of >4,700 studies. This database is 
focused on study-level results and, thus, requires more work from a user to understand 
the details behind the association. The PheWAS page can be used to query a gene of 
interest and assess whether there is a known trait association with a variant near the 
gene. 
 

 
 

 
1.2 Assess the properties of variants associated with the phenotype of interest. Depending 
on the results of the above query, we assign the gene to one of five categories. The 
categories are designed to provide simple rules to overcome the major challenge of using 
GWAS data: faced with an association, we do not know which gene is “causal” for the 
association – most GWAS associations map to noncoding regions of the genome and are 
spread over large regions that contain many genes. The HuGE framework provides a few 
simple steps that can be easily conducted as a first pass to obtain evidence for the gene’s 
causality. 
 
The general approach in each step is to determine (based on prior literature evidence) the 
likelihood that a gene with the observed evidence is causal. Assuming this probability is 
PPA, we then derive a BF using the following equation:  
 

𝐵𝐹 = 1
𝑃𝑃𝐴

1 − 𝑃𝑃𝐴
𝑝𝑟𝑖𝑜𝑟

1 − 𝑝𝑟𝑖𝑜𝑟
2 3 

 
In all cases, we use a prior of 5%, as the literature estimates for the posteriors are provided 
for genes about which nothing else is known. 
 

No evidence: No association within 100kb of the gene achieves p<5×10-8. In this 
case, the common variant data provide no genetic support, and we assign a BF=1. 
Reasons for not assigning BF<1 are discussed in the corresponding manuscript. 

  
Causal coding variant: Most significant association in the genomic locus is a 
nonsynonymous variant. Based on previous literature (Mahajan et al., 2018b), a 
causal nonsynonymous variant association is the strongest tier of genetic support for 
the gene. While rigorously determining causality requires in-depth fine mapping and 
credible set analysis, for the purposes of our guidelines we assign genes to this tier if 
the variant with the lowest p-value in the region is a nonsynonymous variant within 
the gene. This search can be conducted within resources that show all variants 
associated with a trait and allow filters on variant annotations shown (see below for 
an example using the CMDKP). 
 



If a gene falls into this tier, we assign a Bayes Factor that raises a 5% prior to a 
~95% posterior probability, corresponding to a rough intuition of “near certainty” for 
the gene. This corresponds to a BF of ~350. Note that a BF of 350 raises a prior of 
20% to an even greater posterior. 

 
Nearest gene: Most significant association in the genomic locus is closest to 
the gene of interest. Previous reports have noted that, the gene nearest to the most 
significant association within a GWAS locus is the causal gene for that association 
~70% of the time (Stacey et al., 2019). This search can be conducted on resources 
that either annotate the gene nearest to the associations, or that display graphical 
LocusZoom plots of the associations and genes within a region. 
 
If a gene does not fall into the “causal coding variant” tier, but it is the gene nearest to 
the strongest association, then the BF becomes the value required to raise a prior of 
5% to ~70%. This corresponds to a BF of ~45. 

 
Coding variant: A nonsynonymous variant in the gene of interest is associated 
at p<5×10-8. The next level of evidence is based on whether there is a 
nonsynonymous variant associated with the phenotype of interest. Previous studies 
have shown that, if a gene harbors a nonsynonymous variant association – even if 
there might be stronger associations in the region – then it is the causal gene ~50% 
of the time (Mahajan et al., 2018b). 
 
If the gene is not in the “causal coding variant” or “nearest gene” tiers, but it does 
harbor an associated coding variant, then we assign it a BF that raises a prior of 5% 
to a posterior probability of ~50%. This corresponds to a BF of ~20. 

 
GWAS locus: An association is detected within 100kb of the gene of interest. If 
a gene is not in any of the above tiers, than we assume that it is equally likely as any 
gene in the region to be causal for the association. On average, there are ~7 genes 
nearby (i.e. within 100kb) of a GWAS association. Thus, we assign the gene a BF 
sufficient to raise a prior of 5% to a posterior of ~14%. This corresponds to a BF of 
~3. 
 
If we wish to obtain a more accurate BF specific to a GWAS locus, we can redefine 
this calculation according to the actual number of genes nearby the association. For 
example, if the locus of interest contains 6 genes (as opposed to the average of 7), 
the posterior probability can be assumed to 1/6, or ~17%, which would result in a BF 
to ~3.9. 

 
Step 2: Assess evidence from rare variation 

2.1 Finding rare variant association statistics. As with common variation, there are several 
freely available databases of rare coding variation association statistics. These databases 
allow queries of gene-level “aggregate” associations, since individual rare variants rarely 
have enough statistical power to detect associations and thus are most often analyzed in 
“groups” to boost statistical power. Two recommended resources are: 
 

The common metabolic disease knowledge portal (CMDKP): https://hugeamp.org/  



Along with GWAS data, the CMDKP contains association statistics from rare variant 
gene-level tests for up to 23 metabolic traits across nearly 50,000 individuals. To 
evaluate a gene of interest, search the homepage for the gene:  
 

 
 

On the subsequent page, click on the gene name in the “Genes overlapping region” 
section: 
 

 
 

On the subsequent page, scroll down to the rare variant gene-level association 
statistics: 
 

 
 
The p-values shown in the table are corrected for the number of variant groupings 
tested and are what should be used in the HuGE framework. If desired, a researcher 
can inspect the group-level statistics by clicking on “Masks + Plot”: 



 
 
 
Gene-based association summary statistics database (genebass): https://genebass.org/ 
Genebass is a database containing gene-level association statistics from over 280,000 
individuals from the UK Biobank across >3,800 traits. Note that, while most variants in 
the genome are rare, this database contains gene-level results that were not filtered on 
minor allele frequency (MAF) and, thus, may contain common variants in the gene-level 
test results. To analyze results for a specific gene, either (a) visit the detailed 
walkthrough page (https://genebass.org/walkthrough) or (b) follow several steps, which 
begin with a query for the gene of interest: 
 

 
 
 
Next, select the “burden test” tab  
 



 
 

Next, select variant groupings of interest (i.e. only loss-of-function variants or loss of 
function + missense variants): 
 

 
 

These queries will produce up to two p-values for the gene. The p-value used in the HuGE 
framework should be the minimum p-value, corrected for two tests (2 * p is an acceptable 
approximation to use). 

 
2.2 Assessing the strength of the rare variant association. Unlike common variants, rare 
variant gene-level based associations have less statistical power, but, when detected, point 
to the causal gene. Thus, the framework for assessing rare variant-related evidence 
focuses on evaluating association strength rather than evaluating gene causality (as is 
done in the common variant step). To convert the strength of the association to a Bayes 
Factor, we employ a previously described method (Wakefield, 2008) where the estimated 
beta and standard error from the association test is used to calculate an “approximate 
bayes factor”: 
 

𝐴𝐵𝐹 = 	5
𝑉

𝑉 + 	𝜔	 	∗ 𝑒𝑥𝑝 :
𝜔𝛽!

2𝑉(𝑉 + 	𝜔)? 

 
where 𝐴𝐵𝐹 indicates “approximate bayes factor”, 𝛽 indicates the effect size of the gene-
level association, 𝑉 indicates the square of the standard error of the association effect size, 
and 𝜔 indicates the estimated prior allelic variance. We recommend a value of 0.3696 for 
the prior allelic variance, reflecting a distribution of true effect sizes ~9 times more variable 
than that previously used for common variants (Mahajan et al., 2018a)). If precise BFs are 
important for the analysis, we recommend that researchers perform a sensitivity analysis to 
determine the degree to which their conclusions depend on this parameter. 
 
Formally, the ABFs depend on the effect sizes and standard errors of the association, 
rather than the p-values. Both effect sizes and standard errors can be obtained through the 
CMDKP and genebass, and we recommend that the exact ABF calculation be performed 



as a matter of best practice. However, a rough estimate of genetic support will be adequate 
for many researchers, and we therefore provide a simple approximate mapping between 
categories of p-values and ABFs. We obtained the values below by calculating ABFs for a 
sample of genes with p-values in the specified range and then taking the average value. 
 

No evidence: if the rare variant gene-level association has p≥0.1, the BF is set as 1 
(equivalent to no evidence provided by rare variants). Reasons for not assigning a BF<1 
are discussed at length in the corresponding manuscript. 
 
Exome-wide: if the rare variant gene-level association has p≤2.5×10-6, the BF is set at 
350, corresponding to a maximum posterior of ~95% for a prior of 5%. We cap the 
posterior to be conservative, although a case could be made for higher values. 
 
Strong: if the rare variant gene-level association has 2.5×10-6≤p≤1×10-3, the BF is set 
as 20. 

 
Nominal: if the rare variant gene-level association has 1×10-3≤p≤0.05, the BF is set as 
3. 
 
Weak: if the rare variant gene-level association has 0.05<p<0.1, the BF is set as 1.5. 
 

Step 3: Combine evidence for common and rare variation to calculate the HuGE score 
In the final step, we assume that the common variant and rare variant genetic data are 
independent. This is a reasonable approximation for most genes, although researchers should 
be aware that there are cases were common variants affect rare variant associations through 
linkage disequilibrium or through inclusion in gene-level tests (e.g. within genebass). Under the 
independence assumption, the common variant and rare variant BFs simply multiply to yield a 
combined BF. This BF is then assigned to one of seven tiers based on previous terminology 
(Jeffreys, 1961). 

 
HuGE score value Evidence level 

1 No evidence 
>1 Anecdotal 
≥3 Moderate 

≥10 Strong 
≥30 Very strong 

≥100 Extreme 
≥350 Compelling 

 
These tiers are displayed as the qualitative categories in Figure 1. To map them to PPA 
values, we then apply the equations: 
 

𝑃𝑂 = 𝐻𝑢𝐺𝐸 ∗ '
𝑝𝑟𝑖𝑜𝑟

1 − 𝑝𝑟𝑖𝑜𝑟. 

 

𝑃𝑃𝐴 =
𝑃𝑂

1 + 𝑃𝑂 
 



where 𝑃𝑂 indicates the posterior odds, 𝐻𝑢𝐺𝐸 indicates the combined BF, 𝑝𝑟𝑖𝑜𝑟 indicates the 
prior probability of association, and 𝑃𝑃𝐴 indicates posterior probability of association. The 𝑃𝑃𝐴 
is displayed in Figure 1 under conservative (prior=5%) and optimistic (prior=20%) scenarios. If 
researchers are so inclined, they can calculate different 𝑃𝑃𝐴 values for different priors, if they 
have additional data supporting the gene that justifies a prior other than 5% or 20%. 

 
To better visualize the impact of combining different levels of common and rare variant 
evidence and the dependence on priors brought by a researcher, Figure 1 in the manuscript 
summarizes the above calculations in a matrix: 

 

 
 
 

where the percentage values indicate posterior probabilities calculated using a 5% prior 
(left of vertical bar) and a 20% prior (right of vertical bar). 
 

Real-world demonstration of the HuGE framework  
Here, we outline how the HuGE framework is implemented for PTEN and type 2 diabetes. 
We use the CMDKP for the analysis, although other resources could be used as well. 

 
Step 1: Common variant association results for PTEN indicate ‘nearest gene’ evidence 
 
A query of PTEN in the CMDKP shows a nearby genome-wide significant association of 
T2D: 

 



 
 
Filtering the associations to coding variants, no nonsynonymous variant is associated at 
p≤5×10-8: 

 
 

However, the most significant variant in the genomic locus is closest to PTEN as 
compared to other genes in the locus: 
 

 
 
We thus assign PTEN to the “nearest gene” category. 
 
Step 2: Rare variant association results for PTEN indicate ‘nominal’ evidence 
Clicking on the PTEN gene to navigate to a new page in the CMDKP, and then scrolling 
down, shows a rare variant T2D association of p=0.0483.  
  



 
 
We thus assign PTEN to the “nominal” category. 
 
Step 3: Combination of common and rare variation BF values indicate ‘extreme’ 
evidence 
We next use Figure 1 to map these two categories to the final HuGE score. This yields 
the “extreme” category of genetic support for PTEN, corresponding to a posterior of 
90% (under a prior of 5%) or 95% (under a prior of 20%). 
 

Limitations 
Users of the HuGE framework must foremost understand that the guidelines above are simply 
a first step toward using human genetic data to evaluate experimentally identified genes. The 
framework is based on estimates, not exact values, and in the interest of accessibility it omits 
many sources of data that expert geneticists use to evaluate genes. It is not designed to result 
in precise posterior probability estimates. 
 
As discussed in the manuscript, human genetics – like all scientific models – has caveats. For 
example, variants are inherited at birth and may not be a good proxy for perturbations 
introduced after the onset of diseases. Many disease genes may not exhibit associations, 
either because (by chance) no genetic variants that perturb the gene are observed in a 
population, or because statistical power is too low to detect associations. 
 
Finally, as mentioned several times above, the current framework only provides support for a 
gene, not against. The primary reason for this limitation is based on the current state of human 
genetics – it is hard to identify variants that (with high confidence) perturb a gene such that the 
lack of an association implies a lack of disease relevance. As sample sizes increase, we will 
be better able to identify “human knockouts” which may enable us to determine true “evidence 
from absence” of a gene’s involvement in disease. 
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